Vacancy for a dentist in Africa . Contact : kadam.karishma@gmail.com

  • Sharebar

COLLIMATORS IN X-RAY DEVICES

No replies
mithilamhapankar's picture
Offline
Joined: 9 Dec 2009

In neutron, X-ray and gamma ray optics, a collimator is a device that filters a stream of rays so that only those traveling parallel to a specified direction are allowed through. Collimators are used in neutron, X-ray, and gamma-ray optics because it is not yet possible to focus radiation with such short wavelengths into an image through the use of lenses as is routine with electromagnetic radiation at optical or near-optical wavelengths. Collimators are also used with radiation detectors in nuclear power stations for monitoring sources of radioactivity.

Collimators are used in linear accelerators used for radiotherapy treatments. They help to shape the beam of radiation emerging from the machine, they can limit the maximum field size of a beam. The treatment head of a linear accelerator consists of both a primary and secondary collimator. The primary collimator is positioned after the electron beam has reached a vertical orientation. When using photons, it is placed after the beam has passed through the X-ray target. The secondary collimator is positioned after either a flattening filter (for photon therapy) or a scattering foil (for electron therapy). The secondary collimator consists of two jaws which can be moved to either enlarge or minimize the size of the treatment field.

Although collimators improve resolution, they also reduce intensity by blocking incoming radiation, which is undesirable for remote sensing instruments that require high sensitivity. For this reason, the gamma ray spectrometer on Mars Odyssey is a non-collimated instrument. Most lead collimators let less than 1% of incident photons through. Attempts have been made to replace collimators with electronic analysis.[citation needed]

up
0 users have Like. User Likes